Predicting Skin Permeability Using Molecular Dynamics Simulations

Experiences from HPC systems and local clusters

- Transdermal drug administration
 - Avoid first pass metabolism
 - Fewer side effects
 - Continuous delivery
 - Stable dosage levels
- Relatively few drugs can be administered through skin
 - Effective barrier

- Atomistic model of the lipid barrier in stratum corneum.
 - Based on cryo-EM images and molecular dynamics (MD) simulations.
 - Developed together with Prof. Lars Norlén at Karolinska Institutet.
- MD simulations allow explanations of processes at a level of detail difficult to access *in vitro* or *in vivo*.

Skin permeability calculations

- Understanding which regions of the skin barrier affect permeability the most.
- Where do excipients in transdermal drug formulations go in the skin barrier?
- Improved understanding how excipients can be combined for complementary, or synergistic, effects.
- What ingredients permeate the skin?

Permeation resistance extracted with Molecular Dynamics

Lundborg, M. et al. Sampling Spatial and Alchemical Reaction Coordinates. Biophys. J. In Press.

Permeation resistance extracted with Molecular Dynamics

In vitro development process

- GROMACS
 - Open source MD simulation software
 - Major development group at KTH and Stockholm University, located at Scilifelab, Solna
 - ERCO Pharma is actively involved in the development team
 - High performance compared to similar software
 - Efficient use of CPU and GPU resources
 - SIMD for CPUs
 - CUDA, OpenCL and SYCL for GPUs
 - Sophisticated algorithms for accelerating the sampling of the molecular system

Singh, N.; Li, W. Recent Advances in Coarse-Grained Models for Biomolecules and Their Applications. Int. J. Mol. Sci. 2019, 20, 3774.

- Company cluster, 18 servers
 - Dual 12 core Intel Broadwell CPUs
 - 4 Nvidia GPUs (GTX 1080 Ti and RTX 2080)
- Access to academic cluster, ~30 servers
 - Intel (Skylake) and AMD (Naples) CPUs
 - 4 Nvidia GPUs (RTX 2080 or RTX A5000)

- Vega (Maribor, Slovenia)
 - 960 CPU nodes:
 - Dual AMD Epyc 7H12 (64 cores/CPU)
 - 60 GPU nodes:
 - Dual AMD Epyc 7H12 (64 cores/CPU)
 - 4 NVidia A100 GPUs

- Tetralith, NSC, Linköping, Sweden
- Dardel, PDC, Stockholm, Sweden
- Beskow, PDC, Stockholm, Sweden

- Full node CPU allocation.
- Low RAM requirements.

System	Approximate time to solution (days)
Local cluster 1 GPU node	14
Local cluster 3 GPU nodes	5
Vega 3 CPU nodes	18
Vega 3 GPU nodes	2.5

- Good help from ENCCS when applying for allocations.
- EuroHPC Joint Undertaking can be valuable for European industry.
- Vague communication regarding publication of results.
 - From EUROHPC-JU-Decision: "Requirements: ... Commit to publish the results of their project."
 - From Vega Terms of Use: "Unless otherwise agreed or specified, e.g., in a contract for industrial or other commercial use, research results must be released publicly, preferably for peer review."
 - From ENCCS "... you do not need to publish details."