Large scale computations for 5G & 6G

Johan Eker

Principal Researcher Cloud Achref Rabhi Senior Developer Thermal Design

5G

6G: Connecting a cyber-physical world

Connected intelligent machines

Internet of senses

Connected sustainable world

Observe and act in real-time Physical world

Application areas

- Not only traditional HPC
 - Large scale radio simulations
 - User behavior
 - Wave propagation
 - Chip design
 - Thermal design
 - Antenna design
- Machine learning
 - Al is everywhere
- Security
 - Often sensitive data
 - Algorithms, solutions & results are confidential
- Also interactive models, not just batch

R&D processes and ways-of-working

Resources

- Heterogeneous workloads
 - HPC vs cloud educational resources
- Suitable for R&D processes and ways-of-working
 - Available when needing it predictable access
 - Short lead-time to changes
 - Starting small: trials, knowledge-build-up
 - Scale up according to needs
- The company must be in control of the processes
- IT security compliance
 - Strict monitoring and audit trails
 - RBAC using company credenctials
 - Approved images & tools
 - etc..

Development phases from research to deployment (product or development tools)

Time

Example1: Real-time interactive CFD modelling Closing the loop to save energy

Example 2: Radio wave propagation and beam forming using GPUs and Omniverse Link

Example 3: HPC for cryptography

- Searching for optimal Boolean circuit implementation of AES S-Box
 - Gate-sharing in 18x8 linear transformations
 - Search tree with backtracking
- 5G encryption SNOW-V
 - Searching for linear feedback polynomials with low weight
 - Primitive polynomial of degree 127 and weight 3 or 4
 - Used in construction of new air encryption algorithm in 5G.
- Using 1500-3000 coredays each
 - Highly parallel, loosely coupled

Ekdah, I P., Johansson T., Maximov, A and Yang, J (2018). A new SNOW stream cipher called SNOW-V

Example 4: Thermal design simulation

Ericsson Remote Radio systems

- Radio system family:
 - Macro, Massive MIMO, mmWave, Micro, Indoor remote radio and antenna-integrated
 - Operate in GSM, WCDMA, LTE & 5G —
 - Can be installed in cabinets, close to antennas, or fully integrated in antennas

AIR 6428

Capacity

25 kg

64 T/R branches

Passive cooling

Wind Load

Physical testing (Wind tunnel)

• Benchmark test case: DES (Detached Eddy Simulation) with ANSYS Fluent

	Ericsson HPS Desktop	Ericsson Windows/HPS Cluster	Note
No. of CPUs	8 (max. allowable usage)	30 (1 node)	Computing performance deteriorates if >30 CPUs are used; might be due to poor scaling on Windows cluster
Time (hours/case)	60	15	Assume linear scaling.

Virtual testing (Advanced simulation)

ANST

Multi-Phase Cooling

➤Understanding of the dynamical processes of 2-phase system for design purposes so that our innovation capabilities are not limited

➤Own predictive tools to dimension or to qualify the 2-phase components

	Ericsson LSF cluster
No. of CPUs	252 (7 nodes)
Time (hours/case)	168

➤ For real geometries, computational time is expected to be much more higher

Air Cooling

- > Conjugate heat transfer simulations (acc. for condition, free convection and radiation)
- > Different power budget scenarios to run per product for each heat sink configuration
- ➤ Applicable for: Remote Radios, Base Bands, Antennas...

	Ericsson HPS Desktop	No. of power budgets
No. of CPUs	8	20
Time (hours/case)	2-3	40-60

Summary

- A wide range of workloads
- Al focus is rapidly increasing
- Cloud style access to resources
- Security is a main concern

ericsson.com/future-technologies