Introduction to HPDA and Ophidia

Donatello Elia, Fabrizio Antonio, Alessandro D'Anca

Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Lecce, Italy

ENCCS/CMCC workshop: Training on HPDA for climate data with the Ophidia framework

11 November 2021

10:00-10:10 Welcome

10:10-10:40 Introduction to HPDA and Ophidia

- 10:40-11:15 Tutorial about PyOphidia basic usage
- 11:15-11:20 Short break
- 11:20-12:00 Hands-on on interactive analysis with PyOphidia
- 12:00 -13:00 Lunch break
- 13:00-13:40 Data analytics workflows with Ophidia
- 13:40-14:15 Tutorial about workflow building in Ophidia
- 14:15-14:20 Short break
- 14:20-15:00 Hands-on on data analytics workflows

Session outline

Introduction to HPDA and data challenges in eScience

Overview of the Ophidia HPDA framework

Ophidia core concepts: architecture, storage model, operators and primitives, terminal and deployment

Ophidia Python bindings: PyOphidia

DEMO: Tutorial about PyOphidia usage

HANDS-ON: Data analytics examples with PyOphidia

Disclaimer: this material reflects only the authors' view, and the EU-Commission is not responsible for any use that may be made of the information it contains.

Climate analysis challenges & issues

Effective scientific analysis requires *novel solutions* able to cope with **big data volumes** Several key challenges and practical issues related to large-scale climate analysis

- Setup of a data analysis experiment requires the *download of (multiple) input data*
 - Data download is a big barrier for climate scientists
 - o Reducing data movement is essential
- The complexity of the analysis leads to the need for *end-to-end workflow support*
 - Data analysis requires highly-scalable solutions able to parallelise the processing
 - Analysing large datasets involves running tens/hundreds of analytics operators
- Large data volumes pose strong requirements in terms of computational and storage resources

High Performance Data Analytics for eScience

- o Computational science modeling and data analytics are both crucial in scientific research
 - o Their coexistence in the same (current) software infrastructure is not trivial
- The convergence of the solutions and technology from the Big Data and HPC software ecosystems is a key factor for accelerating scientific discovery

High-Performance Data Analytics (HPDA)

- New computing paradigms, data management approaches and job management solutions are being designed by the scientific software community
- Higher-level programming approaches for data analytics are required to effectively exploit the resources and improve scientists' productivity

Introduction to HPDA and data challenges in eScience

Overview of the Ophidia HPDA framework

Ophidia core concepts: architecture, storage model, operators and primitives, terminal and deployment

Ophidia Python bindings: PyOphidia

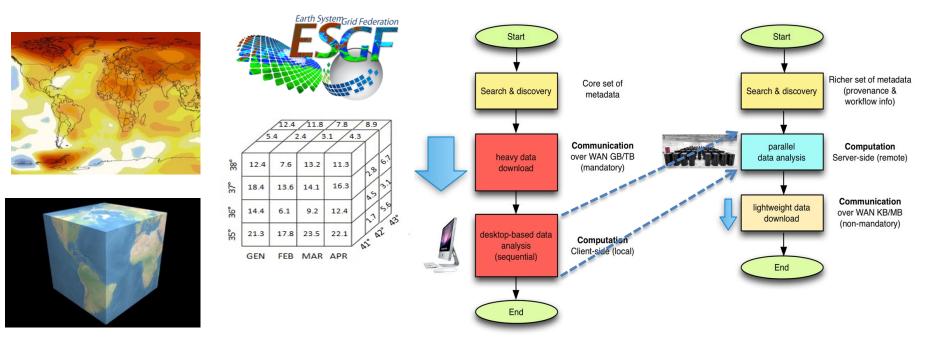
DEMO: Tutorial about PyOphidia usage

HANDS-ON: Data analytics examples with PyOphidia

Ophidia HPDA framework

Ophidia (<u>http://ophidia.cmcc.it</u>) is a CMCC Foundation research project addressing data challenges for eScience

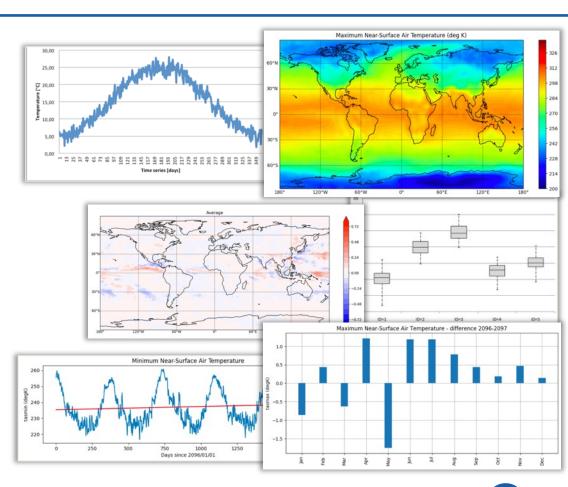
- A **HPDA framework** for multi-dimensional scientific data joining HPC paradigms with scientific data analytics approaches
- In-memory and server-side data analysis exploiting parallel computing techniques
- Multi-dimensional, array-based, storage model and partitioning schema for scientific data leveraging the **datacube** abstraction
- End-to-end mechanisms to support **interactive analysis**, **complex experiments** and **large workflows** on scientific data



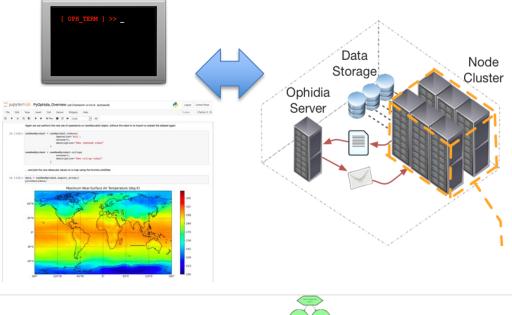
S. Fiore, D. Elia, C. Palazzo, F. Antonio, A. D'Anca, I. Foster, G. Aloisio, "Towards High Performance Data Analytics for Climate Change", ISC High Performance 2019, LNCS Springer, 2019

A paradigm shift

Volume, variety, velocity are key challenges for big data in general and for climate sciences in particular. Client-side, sequential and disk-based workflows are three limiting factors for the current scientific data analysis tools.



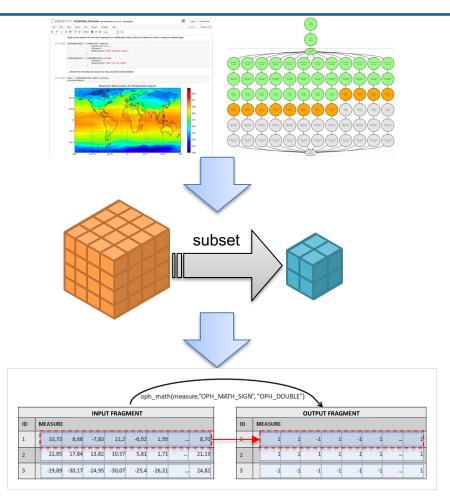
S. Fiore, A. D'Anca, C. Palazzo, I. Foster, D. N. Williams, G. Aloisio, "Ophidia: toward bigdata analytics for eScience", ICCS2013 Conference, Procedia Elsevier, 2013


Data analytics requirements and use cases

Requirements and needs focus on:

- > Time series analysis
- > Data subsetting
- > Model intercomparison
- Multi-model means
- > Massive data reduction
- Data transformation
- Parameter sweep experiments
- > Maps generation
- > Ensemble analysis
- Data analytics workflow support

Server-side paradigm and execution modes


Oph_Term: a terminal-like commands interpreter serving as a client for the Ophidia framework

PyOphidia: a Python interface for datacube management & analytics with Ophidia

Multiple execution modes:

- Interactive analysis (e.g. notebooks)
- Python applications
- Workflows of operators
- Async/sync execution

Granularity of operations in Ophidia

Workflows/applications: combine multiple Ophidia Operators to compute from complex experiments (e.g., multi-model analysis) to simple indicators (e.g., Summer Days)

Ophidia Operators: datacube-level operations on multi-dimensional data. Both data and metadate. Some examples: subsetting, aggregation, comparison

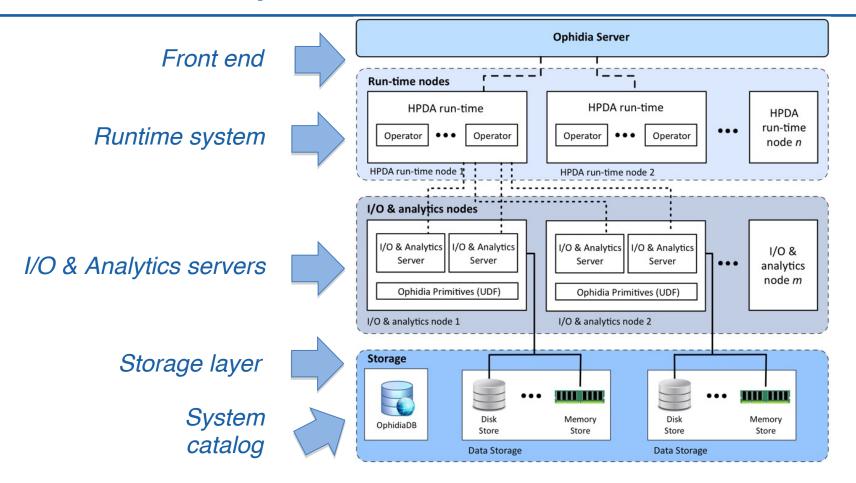
Ophidia Primitives: low-level functions applied on the single binary arrays of the datacube fragments. Some examples: time series analysis, array transformations

Some international projects exploiting Ophidia

EUROPE - BRAZIL COLLABORATION OF BIG DATA SCIENTIFIC RESEARCH THROUGH CLOUD-CENTRIC APPLICATIONS

Introduction to HPDA and data challenges in eScience

Overview of the Ophidia HPDA framework


Ophidia core concepts: architecture, storage model, operators and primitives, terminal and deployment

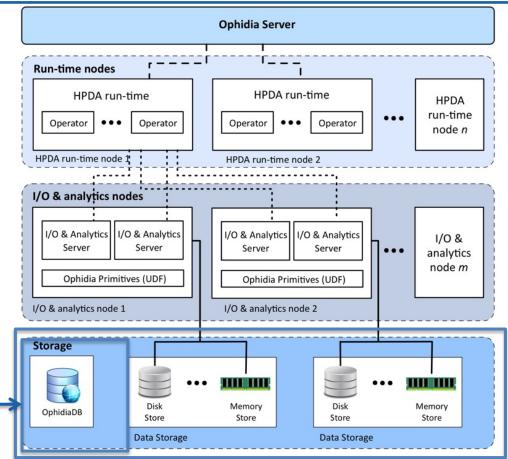
Ophidia Python bindings: PyOphidia

DEMO: Tutorial about PyOphidia usage

HANDS-ON: Data analytics examples with PyOphidia

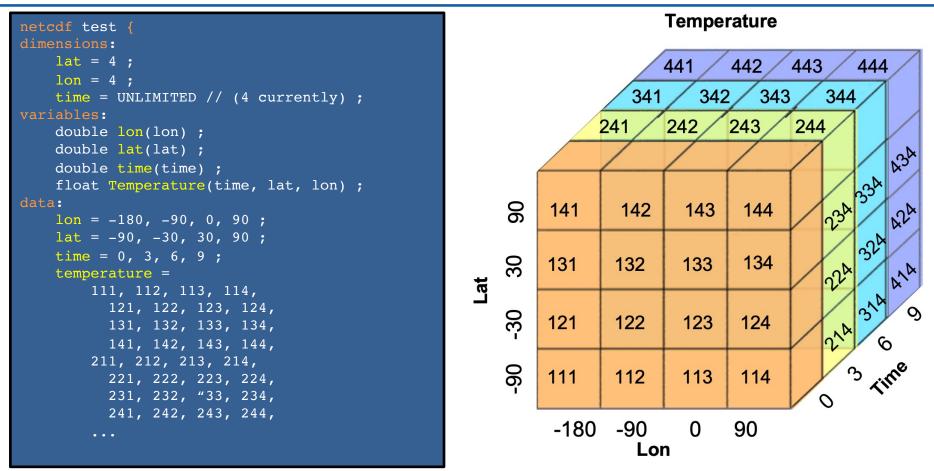
Ophidia architecture: overview

Ophidia architecture: storage layer & model


Distributed hardware resources to manage storage

Ophidia implements the **datacube abstraction** from OLAP

The storage model relies on **implicit** (array-based) and **explicit** (tuple-based) **dimensions** for specific representations of data


Data partitioned in a hierarchical fashion over the storage according to the storage model & partitioning schema

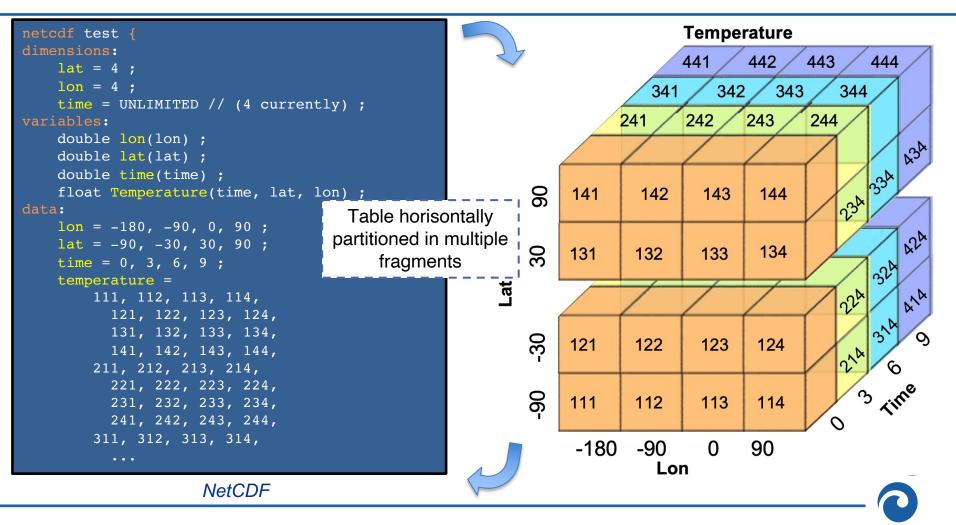
OphidiaDB is the system catalog: maps data fragmentation and tracks metadata

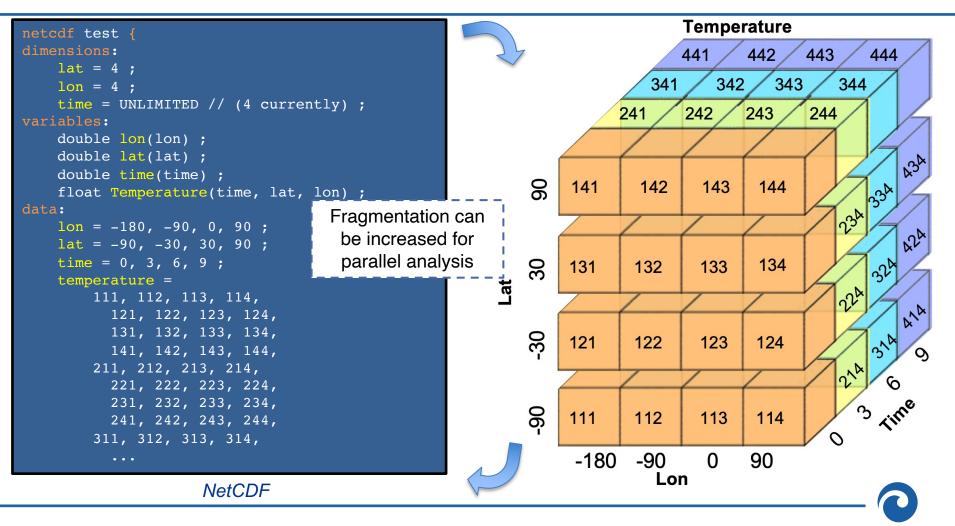
S. Fiore, D. Elia, C. Palazzo, F. Antonio, A. D'Anca, I. Foster, G. Aloisio, "Towards High Performance Data Analytics for Climate Change", ISC High Performance 2019, LNCS Springer, 2019

From NetCDF to datacube

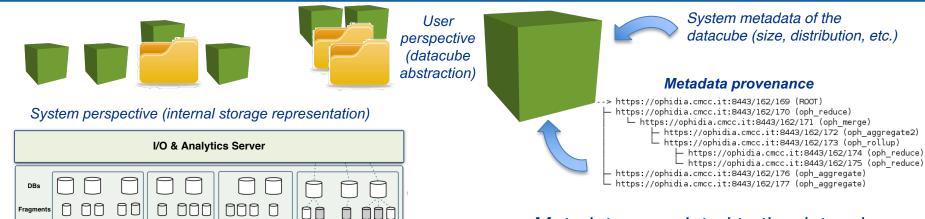
The datacube abstraction naturally fits for scientific multi-dimensional data, like climate data

<pre>netcdf test { dimensions: lat = 4 ; </pre>						c; measure=Temperature ; ores=2;nfrags=2;			
lon = 4;	(ont])			Temperature					
<pre>time = UNLIMITED // (4 curr variables:</pre>	ently);		lat	lon	time[0]	time[1]	time[2]	time[3]	
double lon(lon);			-90	-180	111	211	311	411	
double lat(lat);		-	-90	-90	112	212	312	412	
<pre>double time(time) ;</pre>			-90	0	113	213	313	413	
float Temperature(time, lat	, lon) ;		-90	90	114	214	314	414	
data:			-30	-180	121	221	321	421	
lon = -180, -90, 0, 90;			-30	-90	122	222	322	422	
lat = -90, -30, 30, 90;		1	-30	0	123	223	323	423	
time = 0, 3, 6, 9;	Defined as:		-30	90	124	224	324	424	
<pre>temperature = 111, 112, 113, 114,</pre>	implicit dimensic	on i	30	-180	131	231	331	431	
121, 122, 123, 124,			30	-90	132	232	332	432	
131, 132, 133, 134,		-	30	0	133	233	333	433	
141, 142, 143, 144,		-	30	90	134	234	334	434	
211, 212, 213, 214,			90	-180	141	241	341	441	
221, 222, 223, 224,		-	90	-90	142	242	342	442	
231, 232, 233, 234,			90	0	143	242	343	443	
241, 242, 243, 244,			90	90	143	243	343	444	
311, 312, 313, 314,			30	30	144	244	344	444	
•••						Ophidia			
NetCDF		V				- 12			


0


<pre>netcdf test { dimensions: lat = 4 ; </pre>	<pre>oph_importnc src_path=test.nc;measure=Temperature; imp_dim=time;ncores=2;nfrags=2;</pre>						
lon = 4;					Tempe	erature	
<pre>time = UNLIMITED // (4 currently) ; variables:</pre>		lat	lon	time[0]	time[1]	time[2]	time[3]
double lon(lon) ;		-90	-180	111	211	311	411
double lat(lat);		-90	-90	112	212	312	412
double time(time) ;		-90	0	113	213	313	413
<pre>float Temperature(time, lat, lon) ;</pre>		-90	90	114	214	314	414
data:		-30	-180	121	221	321	421
lon = -180, -90, 0, 90 ;	1	-30	-90	122	222	322	422
lat = -90, -30, 30, 90 ; Defined as:		-30	0	123	223	323	423
time = 0, 3, 6, 9; explicit dimensions	6 i 🗖	-30	90				
temperature =	·		_	124	224	324	424
111, 112, 113, 114,		30	-180	131	231	331	431
121, 122, 123, 124,		30	-90	132	232	332	432
131, 132, 133, 134,		30	0	133	233	333	433
141, 142, 143, 144,		30	90	134	234	334	434
211, 212, 213, 214,		90	-180	141	241	341	441
221, 222, 223, 224,		90	-90	142	242	342	442
231, 232, 233, 234,		90	0	143	243	343	443
241, 242, 243, 244,		90	90	145	243	344	444
311, 312, 313, 314,		30	50	144	244	544	444
•••	\mathcal{N}				Ophidia		_
NetCDF	V						

<pre>netcdf test { dimensions: lat = 4 ;</pre>	_ src_		.nc;measu ncores=2;	re=Tempera nfrags=2;	ture;
<pre>lon = 4 ; time = UNLIMITED // (4 currently) ; variables:</pre>	ID		Ar	ray	
double lon(lon) ;	1	111	211	311	411
double lat(lat);	2	112	212	312	412
double time(time) ;	3	113	213	313	413
<pre>float Temperature(time, lat, lon) ;</pre>	4	114	214	314	414
data:	5	121	221	321	421
lon = -180, -90, 0, 90;	6	122	222	322	422
lat = -90, -30, 30, 90 ; Mapped to a single	7	123	223	323	423
<pre>time = 0, 3, 6, 9; temperature =</pre>	8	124	224	324	424
111, 112, 113, 114,	9	131	231	331	431
121, 122, 123, 124,	10	132	232	332	432
131, 132, 133, 134,	11	133	233	333	433
141, 142, 143, 144,	12	134	234	334	434
211, 212, 213, 214,	13	141	241	341	441
221, 222, 223, 224,	14	142	242	342	442
231, 232, 233, 234,	15	143	243	343	443
241, 242, 243, 244, 311, 312, 313, 314,	16	144	244	344	444
NetCDF			Ophi		


<pre>netcdf test { dimensions: lat = 4 :</pre>			- sro		=test.nc;	measure=Te es=2;nfrag	mperature; s=2:	
<pre>lat = 4 ; lon = 4 ;</pre>			F		011110 / 11001	-		
<pre>time = UNLIMITED // (4 currently)</pre>) :			Segurar State	_		erature	
variables:	, ,		lat	lon	time[0]	time[1]	time[2]	time[3]
doubl <mark>e lon</mark> (lon) ;			-90	-180	111	211	311	411
doubl <mark>e lat</mark> (lat) ;			-90	-90	112	212	312	412
doubl <mark>e time</mark> (time) ;			-90	0	113	213	313	413
<pre>float Temperature(time, lat, lon)</pre>) ;		-90	90	114	214	314	414
data:			30	-180	121	221	321	421
lon = -180, -90, 0, 90;	Data reor	ganised	30	-90	122	222	322	422
lat = -90, -30, 30, 90;	based on ir	nolicit an	nd 30	0	123	223	323	423
time = 0, 3, 6, 9 ;	explicit dir	•	-	90	124	224	324	424
temperature =	explicit ull	nensions	30	-180	131	231	331	431
111, 112, 113, 114,			30	-180	131	231	332	432
$\begin{array}{c} 121, 122, 123, 124, \\ 131, 132, 133, 134, \end{array}$								
$131, 132, 133, 134, \\ 141, 142, 143, 144,$			30	0	133	233	333	433
211, 212, 213, 214,			30	90	134	234	334	434
221, 222, 223, 224,			90	-180	141	241	341	441
231, 232, 233, 234,			90	-90	142	242	342	442
<u>241, 242, 243, 244,</u>			90	0	143	243	343	443
311, 312, 313, 314,			90	90	144	244	344	444
						Ophidia		
NetCDF		V						

<pre>netcdf test { dimensions: lat = 4 ;</pre>		J sro		=test.nc;r	neasure=Ten es=2; <mark>nfrag</mark> a	-	
lon = 4 ;							
time = UNLIMITED // (4 current	ely) ;	lat	lon	time[0]	time[1]	time[2]	time[3]
<pre>variables: double lon(lon) ;</pre>		-90	-180	111	211	311	411
double lat(lat) ;		-90	-90	112	212	312	412
double time(time) ;		-90	0	113	213	313	413
float Temperature(time, lat, l	.on) ;	-90	90	114	214	314	414
data:	Table horisontally	-30	-180	121	221	321	421
lon = -180, -90, 0, 90;	,	-30	-90	122	222	322	422
lat = -90, -30, 30, 90;	partitioned in multip	-30	0	123	223	323	423
time = 0, 3, 6, 9 ;	fragments	-30	90	124	224	324	424
temperature =					Temp	erature	
111, 112, 113, 114,		lat	lon	time[0]	time[1]	time[2]	time[3]
121, 122, 123, 124, 131, 132, 133, 134,		30			231	331	431
141, 142, 143, 144,		30	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		232	332	432
211, 212, 213, 214,		30			233	333	433
221, 222, 223, 224,		30			233	334	434
231, 232, 233, 234,		90			241	341	441
241, 242, 243, 244,		90			241		441
311, 312, 313, 314,						342	
•••		90			243	343	443
		90	90	144	244	344	444
NetCDF	V				Ophidia		

Data abstraction: cube space perspective

CMD	BEHAVIOUR	Iđ	+===== Var iab le	Ke
cd	change directory	736 930 68	tas	sta rd e
mkdir	create a new folder	 736 930 69	tas	lo: am
rm	remove an empty folder or hide (logically delete) a container	 736 930 70	tas	cor t
ls	list subfolders and containers in a folder	736 930 71	tas	un.
mv	move/rename a folder or a container	736 930 72	tas	or: al e

Storage back-end C

Storage back-end A

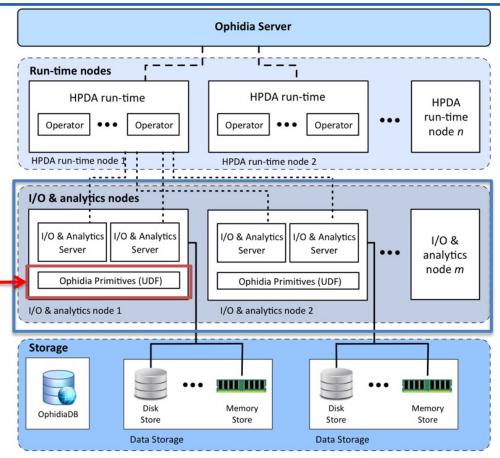
Storage back-end B

Metadata associated to the datacubes

Iđ	+===== Var iab le		ту ре	Value
736 930 68	tas	standa rd_nam e	te xt	air_temperature
736 930 69	tas	long_n ame	te xt	Air Temperature
736 930 70	tas	commen t	te xt	This is sampled synoptically.
736 930 71	tas	units	te xt	ĸ
736 930 72	tas	origin al_nam e	te xt	temp2

S. Fiore, D. Elia, C. Palazzo, F. Antonio, A. D'Anca, I. Foster, G. Aloisio, "Towards High Performance Data Analytics for Climate Change", ISC High Performance 2019, LNCS Springer, 2019

Ophidia architecture: I/O & Analytics layer


Multiple **I/O & analytics nodes** execute one or more servers

Native **in-memory** analytics & I/O **engine** for **n-dimensional arrays**

Handles also I/O with NetCDF files, access and management of datacubes

Servers run the (binary) array-based **Ophidia primitives** (UDF)

Servers can transparently interface to different storage back-ends

D. Elia, S. Fiore, A. D'Anca, C. Palazzo, I. Foster, D. N. Williams, G. Aloisio (2016). "An in-memory based framework for scientific data analytics". In Proc. of the ACM Int. Conference on Computing Frontiers (CF '16), pp. 424-429.

Ophidia array-based primitives

Ophidia provides a wide set of array-based primitives (around 100) to perform:

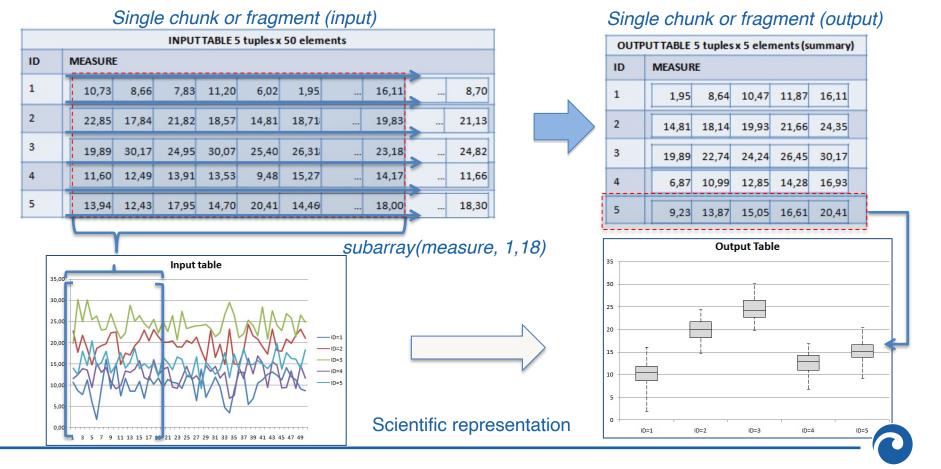
 data summarisation, sub-setting, predicates evaluation, statistical analysis, array concatenation, algebraic expression, regression, etc.

Primitives come as plugins (UDF) and are applied on a single datacube chunk (fragment)

Primitives can be nested to get more complex functionalities

New primitives can be easily integrated as additional plugins

oph_apply operator to run any primitive on a datacube

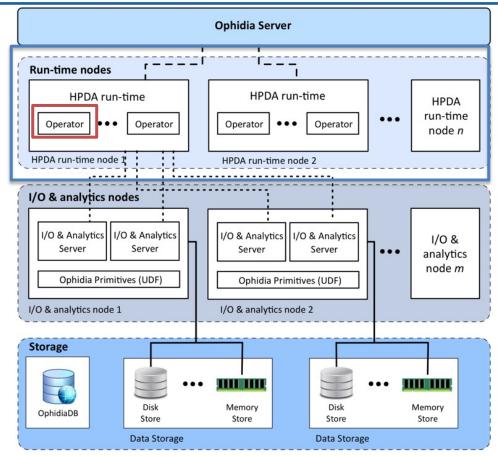

oph_apply(oph_predicate(measure, '**x-298.15**', '**>0**', '**1**', '**0**'))

Ophidia Primitives documentation: http://ophidia.cmcc.it/documentation/users/primitives/index.html

Array-based primitives: nesting support

oph_boxplot(oph_subarray(oph_uncompress(measure), 1,18))

Ophidia architecture: HPDA runtime layer


The Ophidia HPDA runtime system can be executed with **multiple processes/threads** and **distributed over multiple nodes**

Runtime defines a **multi-level parallel** execution model:

- Datacube-level (HTC-based)
- Fragment-level (HPC-based: MPI+X)

Provides the environment for the execution of **parallel** MPI/Pthread-based **operators**

Operators interact with the I/O & analytics servers to manipulate the entire set of fragments associated to a **whole datacube**

D. Elia, S. Fiore and G. Aloisio, "Towards HPC and Big Data Analytics Convergence: Design and Experimental Evaluation of a HPDA Framework for eScience at Scale," in IEEE Access, vol. 9, pp. 73307-73326, 2021

Ophidia operators

CLASS	PROCESSING TYPE	OPERATOR(S)
I/O	Parallel	OPH_IMPORTNC, OPH_EXPORTNC, OPH_CONCATNC, OPH_RANDUCUBE
Time series processing	Parallel	OPH_APPLY
Datacube reduction	Parallel	OPH_REDUCE, OPH_REDUCE2, OPH_AGGREGATE
Datacube subsetting	Parallel	OPH_SUBSET
Datacube combination	Parallel	OPH_INTERCUBE, OPH_MERGECUBES
Datacube structure manipulation	Parallel	OPH_SPLIT, OPH_MERGE, OPH_ROLLUP, OPH_DRILLDOWN, OPH_PERMUTE
Datacube/file system management	Sequential	OPH_DELETE, OPH_FOLDER, OPH_FS
Metadata management	Sequential	OPH_METADATA, OPH_CUBEIO, OPH_CUBESCHEMA
Datacube exploration	Sequential	OPH_EXPLORECUBE, OPH_EXPLORENC

About 50 operators for data and metadata processing

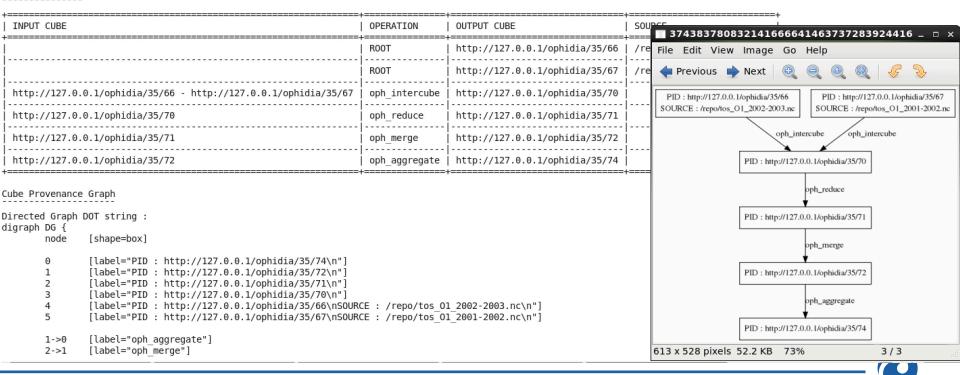
Ophidia operators documentation: http://ophidia.cmcc.it/documentation/users/operators/index.html

"data" operators

"metadata" operators

[37..4416] >> oph cubeio

[Request]:


operator=oph_cubeio;sessionid=http://127.0.0.1/ophidia/sessions/374383780832141666641463737283924416/experiment;exec_mode=sync;ncores=1;cube=http://127.0.0.1/ophidia/35/74;cwd=/;

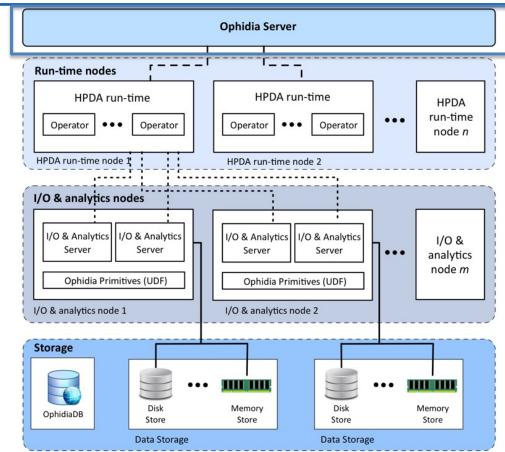
[JobID]:

http://127.0.0.1/ophidia/sessions/374383780832141666641463737283924416/experiment?82#176

[Response]:

Cube Provenance

Ophidia architecture: front-end layer

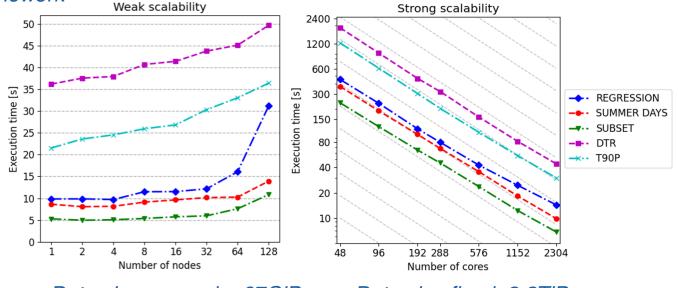

The **Ophidia Server** is the **multi-interface** server front-end

Manages user **authN/authZ**, **sessions** and enables server-side computation

Handles **single task** and **workflows** execution and monitors their execution

Remote interactions with:

- the Ophidia terminal CLI
- PyOphidia Python API
- WPS clients


C. Palazzo, A. Mariello, S. Fiore, A. D'Anca, D. Elia, D. N. Williams, G. Aloisio, "A Workflow-Enabled Big Data Analytics Software Stack for eScience", HPCS 2015, pp. 545-552

Ophidia HPDA framework benchmark

Goal: benchmarking, tuning and optimisation over a large-scale HPC machine of the Ophidia HPDA framework

Evaluate the scalability of Ophidia analytics kernels on a few thousands of cores:

- various strong and weak scalability tests run
- good scalability in most the cases until 3k cores

Data size per node: 67GiB

Data size fixed: 3.2TiB

esiwace

We acknowledge PRACE for awarding access to MareNostrum 4 at Barcelona Supercomputing Center (BSC), Spain and the support provided by BSC (PRACE resources for CoE, in the context of ESiWACE).

D. Elia, S. Fiore and G. Aloisio, "Towards HPC and Big Data Analytics Convergence: Design and Experimental Evaluation of a HPDA Framework for eScience at Scale," in IEEE Access, vol. 9, pp. 73307-73326, 2021

Introduction to HPDA and data challenges in eScience

Overview of the Ophidia HPDA framework

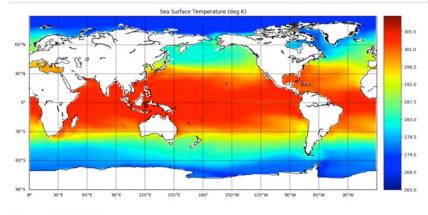
Ophidia core concepts: architecture, storage model, operators and primitives, terminal and deployment

Ophidia Python bindings: PyOphidia

DEMO: Tutorial about PyOphidia usage

HANDS-ON: Data analytics examples with PyOphidia

Programmatic support for data science applications


PyOphidia is a Python module to interact with the Ophidia framework.

It provides a programmatic access to Ophidia features, allowing:

- Submission of commands to the Ophidia Server and retrieval of the results
- Management of (remote) data objects in the form of datacubes
- Easy exploitation from Jupyter Notebooks and integration with other Python modules

```
from PyOphidia import cube, client
cube.Cube.setclient(read_env=True)
mycube =
cube.Cube.importnc(src_path='/public/data/ecas_training
/file.nc', measure='tos', imp_dim='time',
import_metadata='yes', ncores=5)
mycube2 = mycube.reduce(operation='max',ncores=5)
mycube3 = mycube2.rollup(ncores=5)
data = mycube3.export_array()
```

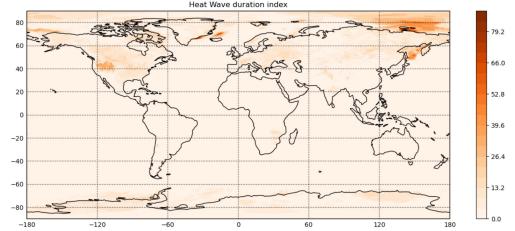
```
mycube3.exportnc2(output_path='/home/test',
export_metadata='yes')
```


Export result to NetCDF file

]: mycube3.exportnc2(output_path='/home/' + cube.Cube.client.username,export_metadata='yes')

Interactive climate data analytics

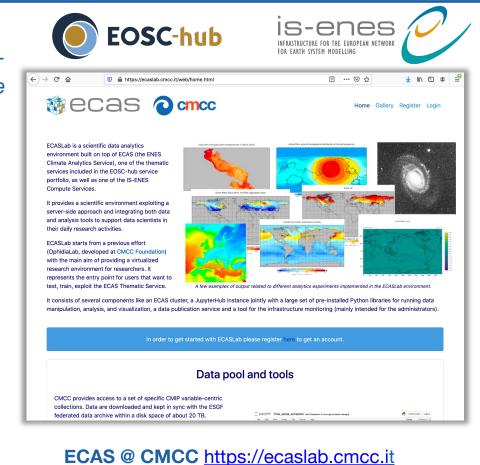
PyOphidia can be combined with other Python libraries (e.g., cartopy, matplotlib) and Notebooks for interactive prototyping, computation and visualisation of climate indices jupyterhub Icing_Days (read only) Logout Control Panel jupyterhub Summer_Days (read only) Logout Control Panel Not Trusted / Ø Python 3 O Python 3 O View Insert Cell Kernel Wirknets Edit View Insert Cell Kernel Edit File Widnets . . 3< 2 1 + + H Run E C + Markdown - 📼 B + 3< 2 E + ↓ HRun ■ C H Code</p> clevs = np.arange(np.nanmin(var), np.nanmax(var)+levstep, levstep) clevs = np.arange(np.nanmin(var),np.nanmax(var)+levStep,levStep) #Set filled contour plot #Set filled contour plot cnplot = ax.contourf(x, y, var_cyclic, clevs, transform=projection,cmap=plt.cm.Blues) cnplot = ax.contourf(x, y, var_cyclic, clevs, transform=projection,cmap=plt.cm.Oranges) plt.colorbar(cnplot,ax=ax) plt.colorbar(cnplot,ax=ax) ax.set_aspect('auto', adjustable=None) ax.set_aspect('auto', adjustable=None) plt.title('Icing Days') 1+ title("Summer Dave") plt.show() jupyterhub Daily_Temperature_Range (read only) Logout Control Panel Icing Days Summer Dave Not Trusted & 🔗 Python 3 O . . 329.4 #Set filled contour plot cnplot = ax.contourf(x, y, var_cyclic, clevs, transform=projection,cmap=plt.cm.Oranges)
plt.colorbar(cnplot,ax=ax) Logout Control Panel Not Trusted / 🔗 Python 3 O ax.set_aspect('auto', adjustable=None) . . plt.title('DTR (deg K)') Code plt.show() (var), np.nanmax(var)+levStep, levStep) DTR (deg K) var_cyclic, clevs, transform=projection,cmap=plt.cm.Blues) 17.02 stable-None) 14.25 ~ Frost Days 11.49 **Tropical Nights** 329.4 8.72 274.5 5.95 219.6 3.19 164.7 109.8 109.8 54.9 - 54.9


Ophidia in eFlows4HPC project

eFlows4HPC – Enabling dynamic and Intelligent workflows in the future EuroHPC ecosystem

Create a workflow software stack and an additional set of services to enable the integration of HPC simulations and modelling with big data analytics and machine learning in scientific and industrial applications

Ophidia is one of the software components of the eFlows4HPC stack:


- It is being used in the Earth System Model workflow through the PyOphidia module:
 - Pre-processing of large volumes of climate data
 - Development of extreme climate indices: HWDI, HWFI, etc.

ENES Climate Analytics Service (ECAS)

- ECAS was developed as one of the EOSC-Hub Thematic Services and represents one of IS-ENES3 compute services
- ECAS builds on top of the *Ophidia HPDA framework,* integrated with components from INDIGO-DataCloud, EUDAT and EGI
- Integrates computing resources with datasets and data analytics tools
- It provides a user-friendly environment based on Jupyter Notebooks, well-known Python modules and a ready-to-use Ophidia instance

What have we learned so far?

Joining HPC and data analytics is an enabling factor for scientific applications

Challenges for efficient climate (scientific) data management and analytics should be addressed: novel and efficient software solution are required

Overview of the Ophidia HPDA framework main aspects and how it addresses data analytics challenges for scientific analysis

- Datacube abstraction for multi-dimensional scientific (climate) data
- Scalable architecture, data distribution, parallel operators

PyOphidia Python module provides a high-level interface for parallel data management and analysis abstracting from the infrastructure complexity

Next: Demo and hands-on with PyOphidia

References and further readings

- D. A. Reed and J. Dongarra. (2015). Exascale computing and big data. Commun. ACM 58, 7 (July 2015), 56–68.
- Asch, M., et al. (2018). Big data and extreme-scale computing: Pathways to convergence-toward a shaping strategy for a future software and data ecosystem for scientific inquiry. Int. J. High Perform. Comput. Appl., 32(4), 435-479.
- S. Fiore, et al. (2013). Ophidia: Toward Big Data Analytics for eScience. ICCS 2013, volume 18 of Procedia Computer Science, pp. 2376-2385.
- S. Fiore, et al. (2014). "Ophidia: A Full Software Stack for Scientific Data Analytics", proc. of the 2014 Int. Conference on High Performance Computing & Simulation (HPCS 2014), pp. 343-350.
- S. Fiore, D. Elia, C. Palazzo, F. Antonio, A. D'Anca, I. Foster and G. Aloisio (2019), "Towards High Performance Data Analytics for Climate Change", ISC High Performance 2019. Lecture Notes in Computer Science, vol. 11887, pp. 240-257.
- D. Elia, S. Fiore and G. Aloisio, "Towards HPC and Big Data Analytics Convergence: Design and Experimental Evaluation of a HPDA Framework for eScience at Scale," in IEEE Access, vol. 9, pp. 73307-73326, 2021
- D. Elia, et al. (2016). "An in-memory based framework for scientific data analytics". In Proc. of the ACM Int. Conference on Computing Frontiers (CF '16), pp. 424-429.
- C. Palazzo, et al. (2015), "A Workflow-Enabled Big Data Analytics Software Stack for eScience", HPCS 2015, pp. 545-552

Acknowledgements

ESiWACE2 has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 823988

eFlows4HPC this project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 955558. The JU receives support from the European Union's Horizon 2020 research and innovation programme and Spain, Germany, France, Italy, Poland, Switzerland, Norway CENTRE OF EXCELLENCE IN SIMULATION OF WEATHER AND CLIMATE IN EUROPE

IS-ENES3 has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 824084

Thank you!

Questions?

More about Ophidia?

Ophidia website: <u>http://ophidia.cmcc.it</u> GitHub repo: <u>https://github.com/OphidiaBigData</u> Contact: ophidia-info [at] cmcc.it

Twitter channel: <u>https://twitter.com/OphidiaBigData</u>

