
ENCSS/EXCELLERAT - Training on Nek5000, 2021 1

Theory of SEM discretisation and code
implementation

Niclas Jansson
PDC Centre for HPC

Based on material by:
Paul Fischer (UIUC), Aleks Obabko (ANL),

Philipp Schlatter (KTH), etc…

Outline

• Spectral Element Method overview
• Solver outline
• Code implementation

ENCSS/EXCELLERAT - Training on Nek5000, 2021 2

Spectral Element Method

ENCSS/EXCELLERAT - Training on Nek5000, 2021 3

+

Finite element (FEM) Spectral Spectral element (SEM), Patera 1984

Typically low order ”infinite” order Locally ”infinite” order

Why high-order?

• High-order numerical methods are well suited for accurate, and
efficient simulations of turbulent flows
• Fast convergence
• Small diffusion and dispersion errors
• Better data volume-over-surface ratio

• Spectral elements allows for complex geometries

ENCSS/EXCELLERAT - Training on Nek5000, 2021 4

Exponential Convergence

• Converges exponentially fast with N
for smooth solutions.
• Four orders of magnitude reduction

in error when doubling the
resolution
• For a given error,
• Fewer grid points
• Smaller memory footprint
• Smaller communication volume

ENCSS/EXCELLERAT - Training on Nek5000, 2021 5

Exact Navier-Stokes Solution (Kovazsnay ‘48)

Why high-order?

ENCSS/EXCELLERAT - Training on Nek5000, 2021 6

Convection of non-smooth data on a 32x32 grid
(K1 x K1 spectral elements of order N).

(cf. Gottlieb & Orszag 77)

Highly Scalable Methods

• High-order at low cost
• Excellent vectorization, dense operators (Level 3 BLAS)
• Fast, scalable coarse-grid solvers (AMG, XXT)
• Domain partitioned into quadrilateral elements
• Loosely coupled elements (C0 continuity)

• Scales up to 1,000,000 processes on BG/Q
• 2.95M elements with ninth order polynomials
• 524 288 cores on ALCF BG/Q Mira;
• Full scale parallel efficiency 0.6

• two processes/core, 2000 points/rank

ENCSS/EXCELLERAT - Training on Nek5000, 2021 7

Example – Poisson

Poisson’s equation with homogenous Dirichlet boundary conditions,
−∇!𝑢 = 𝑓 in Ω

𝑢 = 0 on 𝜕Ω.
Find 𝑢 ∈ 𝑉 ⊂ 𝐻"# such that,

1
$
∇𝑢∇𝑣 𝑑Ω = 1

$
𝑓 𝑣 𝑑Ω ∀𝑣 ∈ 𝑉.

Discretise Ω = ⋃%&#
' Ω%, and let 𝑉(be some approximation space

where we search for a solution.

ENCSS/EXCELLERAT - Training on Nek5000, 2021 8

Example – Poisson

• Seek an approximate solution in 𝑉(with “simple” basis functions
𝜑) 𝑥 *

(= 𝜑# 𝑥 , 𝜑! 𝑥 ,… , 𝜑+ 𝑥

⇒ 𝑢 𝑥 = ∑)&#+ 𝜉)𝜑) 𝑥

• 𝑁-th order polynomials, equidistant points
• We aim for high-order, how large can 𝑁 be?
• Unstable for high order (Runge’s phenomenon)

ENCSS/EXCELLERAT - Training on Nek5000, 2021 9

�1 �0.5 0 0.5 1

0

1

2

x

y

�1 �0.5 0 0.5 1

0

1

2

x

y

�1 �0.5 0 0.5 1

0

1

2

x

y

• 𝑁-th order Legendre-Lagrange polynomials ℎ! 𝜉 ,

ℎ! 𝜉 = " "#$!" $ %&# '$
% (&&)

&%&& '$(&&)
for 𝜉 ∈ [−1, 1]

• Gauss-Lobatto-Legendre quadrature points 𝜉!
• 𝑁-th Legendre polynomials 𝐿"

• New ansatz, tensor product polynomials
𝑢 𝑥, 𝑦 = ∑!*+" ∑,*+" 𝑢!, ℎ! 𝑥 ℎ, 𝑦

• Linear system
𝐴𝑢 = 𝑓

High-order spatial discretisation

ENCSS/EXCELLERAT - Training on Nek5000, 2021 10

N=10

N=4

𝑎!"

High-order spatial discretisation

• Assembly of Stiffness matrix, add element stiffness matrices 𝐴),*0 to
the global stiffness matrix 𝐴

• Sparse system with linear elements
• How large is 𝐴),*0 with our ansatz?
• Quite large with 𝑂 𝑁. non-zeros (𝑂 𝑁/ in 3D!)

• Not feasible to form 𝑨!

ENCSS/EXCELLERAT - Training on Nek5000, 2021 11

for 𝑘 ∈ 𝑇
for 𝑖 = 1 …𝑛

for 𝑗 = 1 …𝑛
𝐴𝕀 ! ,𝕀(&) += 𝐴!,&(

N=4

Matrix-Free Operator Evaluation

• Always work with the unassembled matrix 𝐴'

𝐴$
𝐴0

⋱
𝐴1

⋱
𝐴2

𝑢$
𝑢0
⋮
𝑢3
⋮
𝑢2

• Data replicated in 𝑢' (shared points)
• We only need the action 𝐴'𝑢' inside iterative solvers (why?)
• Can we afford to compute 𝐴'? (memory?, compute wise?)

ENCSS/EXCELLERAT - Training on Nek5000, 2021 12

𝐴# 𝑢#

Matrix-Free Operator Evaluation

ENCSS/EXCELLERAT - Training on Nek5000, 2021 13

• Poisson’s element stiffness matrix: ∫6 ∇𝑢∇𝑣 𝑑𝑒

• Tensor product polynomials

𝑢 𝑥, 𝑦 = ∑!*+" ∑,*+" 𝑢!, ℎ! 𝑥 ℎ, 𝑦

• Partial derivatives evaluated as matrix-matrix products

978
79 &&&'

= ∑:*+" 𝑢:, 978
79 &_!

= ∑: :𝐷!:𝑢:, = 𝐷9𝑢

• Precompute 𝐷 for all directions
• Can we reuse the same partial derivative for all elements?

hi(r)

𝐷
𝐷

⋱
𝐷

⋱
𝐷

𝑢$
𝑢%
⋮
𝑢&
⋮
𝑢'

mxm

2D basis function, N=10

Mapped geometries

• All evaluations performed on the reference element
• Invertible map from physical domain to reference domain

• Geometry, same tensor-product as the solution
x 𝑟, 𝑠 = ∑!*+" ∑,*+" 𝑥!, ℎ! 𝑟 ℎ, 𝑠

• Partial derivatives of 𝑢 using the chain rule (in ℝ<)
=>
=?!

= ∑0&#< =>
=@"

=@"
=?!

• Group all geometric factors =@"
=?!

𝐺)* 𝑟 = ∑0&#< =@"
=?!

=@#
=?!

𝐽(𝑟)

ENCSS/EXCELLERAT - Training on Nek5000, 2021 14

x 𝑟, 𝑠

Jacobian from mapping

Mapped geometries

ENCSS/EXCELLERAT - Training on Nek5000, 2021 15

• Best to use affine (i.e., linear) transformations in order to
preserve underlying GLL spacing for stability and accurate
quadrature.

• Avoid singular corners - ~180o or ~0o

• Avoid high-aspect-ratio cells, if possible

Mesh anisotropy

ENCSS/EXCELLERAT - Training on Nek5000, 2021 16

A common refinement scenario (somewhat exaggerated):

Refinement propagation leads to

• unwanted elements in far-field

• high aspect-ratio cells that are
detrimental to iterative solver
performance (F. JCP’97)

Refinement in
region of interest…

yields unwanted high aspect-ratio
cells in the far field

Matrix-Free Operator Evaluation

• Generalized element stiffness matrix
∫! ∇*∇+ ,-≈ /"+#

/$+#
% 0&& 0&$
0&$ 0$$

/&*#
/$*#

1 (+#) % /"
/$

% 0&& 0&$
0&$ 0$$

/&
/$

*#

1 +# %/%0#/*#

• The entire bilinear form for Poisson

!
4
∇𝑢∇𝑣 𝑑Ω = (

-15

6

𝑣- 7𝐷7𝐺-𝐷𝑢- =(
-15

6

𝑣- 7𝐴-𝑢-

• Recap: through use of chain rule + GLL quadrature:

• Matrix-free operator evaluation.
• Operation count is only O (N 4) not O (N 6) (in 3D) using 𝐷! = (𝐼 ⊗ 𝐼 ⊗ 𝐷)
• Memory access is 7n (Grr ,Grs, etc., are diagonal)
• Work is dominated by matrix-matrix products involving Dr , Ds , etc.

ENCSS/EXCELLERAT - Training on Nek5000, 2021 17

Direct stiffness summation

• How to ensure continuity?
• Data replicated in 𝑢' = 𝑢1 1*$

2

• Boolean gather 𝑄A and scatter matrix 𝑄
• Mapping from local to global

𝑎 𝑢, 𝑣 = ∑1*$2 𝑣1 C𝐴1𝑢1 = 𝑸𝑣 C𝐴'𝑸𝑢 = 𝑣C𝐴𝑢.
• 𝑄 nor 𝑄A formed, only the action 𝑄𝑄A is used
• Matrix-vector product 𝑤 = 𝐴𝑢 ⇒ 𝑤' = 𝑄𝑄C𝐴'𝑢'
• Combined gather-scatter operation
• Local 𝑢!,D1 corresponds to global index 𝑢F̂

• Unit depth stencil for all 𝑵!

ENCSS/EXCELLERAT - Training on Nek5000, 2021 18

Fischer et al 2002

Scalable linear solvers

ENCSS/EXCELLERAT - Training on Nek5000, 2021 19

• Key considerations:
• Bounded iteration counts as 𝑁→∞
• Cost that does not scale prohibitively with number of processors, P

• Our choice:
• CG or GMRES, preconditioned with multilevel additive Schwarz
• Coarse-grid solve:

• XXT projection-based solver
• single V-cycle of well-tuned AMG (in house or using HYPRE)

• Projection in time – extract available temporal regularity in {pn-1, pn-2,…,pn-k}

Time stepping

ENCSS/EXCELLERAT - Training on Nek5000, 2021 20

• Navier-Stokes time advancement:

• Nonlinear term: explicit
• k th-order backward difference formula / extrapolation
• characteristics (Pironneau ’82, MPR ‘90)

• Stokes problem: pressure/viscous decoupling:
• 3 Helmholtz solves for velocity (“easy” w/ Jacobi-precond. CG)
• (consistent) Poisson equation for pressure (computationally dominant)

𝐻𝜙 = ℎ$𝐴 + ℎ%𝐵 𝜙

Stiffness matrix (Laplacian) Mass matrix

𝐻𝑢 = 1
𝑅𝑒 𝐴 − 𝑏!

Δ𝑡 𝐵 𝑢 = 𝑓" (ℎ# = 1, ℎ$ = − 𝑏!
Δ𝑡)

𝐻𝑝 = 𝐴 𝑝 = 𝑓% (ℎ# = 1, ℎ$ = 0)

