
FORTRAN a crash course

Nek5000 specific FORTRAN features

Outlook

2021-03-12 2

• Very short history of FORTRAN

• Basics of syntax

• Variables

• Loops

• Conditional statements

• Subprograms

• C/CUDA binding

Presentation goal

2021-03-12 3

• This is just a short overview of Fortran (mainly Fortran 77)
features that can be found in Nek5000 and is not meant to be a
comprehensive description of the language. The main aim is to
simplify reading of Nek5000 code showing not obvious tricks and
possibly "confusing" code structures.

• Further reading:

– Professional Programmer’s Guide to
Fortran77: https://www.star.le.ac.uk/~cgp/prof77.pdf

– Fortran wiki : http://fortranwiki.org/​

https://www.star.le.ac.uk/~ecgp/prof77.pdf
http://fortranwiki.org/​

Very short history of FORTRAN

2021-03-12 4

FORTRAN stands for Formula Translation and dates back to
1950s.

Fortran standards:

• Fortran 66

– Thankfully largely obsolete

• Fortran 77

– Mostly obsolete, but still in use

• Fortran 90

– Significant modernization

• Others, not so important for this discussion

– Fortran 95

– Fortran 2003

– Fortran 2008

– Fortran 2018

ebay.com

Advantages of FORTAN

2021-03-12 5

• Simple and easy to learn

• Fast

– Compiles as well as language features that can inhibit performance are
absent.

> C can give similar performance with care (e.g. need "restrict" keyword
everywhere etc)

> Matlab/Python require extensive use of performance libraries/toolkits to
get similar performance. (e.g. numpy).

– Was designed from the beginning to rival hand written machine code for
performance

– Large set of optimised libraries.

• Good support for arrays and complex numbers

• Big number of available compilers (including free)

• Large amount of legacy code

Drawbacks of FORTAN

2021-03-12 6

• Static memory allocation (Fortran 77)

• Very limited number of language feature (Fortran 77)

• Slow upgrade of legacy code to new standards

Basics of syntax

2021-03-12 7

• Case insensitive:

– Fortran does not consider case; e.g. "DATA", "Data" and "data" are all
equivalent.

– Exception is the case for text output.

• Comments:

– Lines starting with C or c are treated as comment and ignored

– Remaining part of line can be commented out using the ! symbol

Basics of syntax

2021-03-12 8

Fixed format of Fortran 77:

• Column 1 for comment mark

• Columns 2-5 for numeric labels that can be referenced in a code
(mainly used for old method of loops or for goto statements or for
formatted output)

• Column 6 for continuation character (can be anything, shows this
line is continuation of previous line)

• Code should be from 7 to 72

• Anything after column 72 ignored, most compilers accept a flag to
extend to column 132, but best not used.

• Smart editors can help

Fortran 90 introduces free format; something more sensible, but
not used by NEK5000

Basics of syntax

2021-03-12 9

Fixed format example

Basics of syntax

2021-03-12 10

• Specific parts of the code can be included/excluded from
execution at a compilation step using C-type pre-processing.

• Pre-processing becomes important when binding Fortran 77 and
C routines.

Variables

2021-03-12 11

Basic variable types: integer, real, complex, double precision,
double complex, logical, character

Implicit types:

• Comes from days of punch cards again where saving lines (card
per line) was useful.

• Fortran has implicit typing based on variable name

– Variables that start I,J,K,L,M are assumed integers

– Other variables are assumed real.

• Can be overridden by explicit declaration.

Variables

2021-03-12 12

Implicit types:

• Explicit declaration required by:

– Arrays

– Other type variables, e.g.: integer*8, real*16, logical, character,
complex

• Best practice now is to turn this off with implicit none statement.

– This allows compiler to find your typos, as opposed to getting weird bugs
at runtime because you had a typo in a variable name

– Implicit types used thought NEK5000 (i.e. implicit none never used)

Real life example from NASA

2021-03-12 13

• Implicit none turns on compiler checks, which can be very useful
for finding bugs that can be simple for the compiler to find, but
much harder for people

• Bug in the Project Mercury code (from NASA) where comma was
replaced by period.

– Change instruction from loop to assignment

> Do 5 k=1,3

> Do5k = 1.3

– Spaces are ignored in the FORTRAN syntax

– Implicit none would have flagged do5k as undefined variable

– Using more modern loop syntax would have flagged syntax error in loop
structure.

• See https://en.wikipedia.org/wiki/Mariner_1

Variables

2021-03-12 14

Numerical precision:

• real equivalent to real*4 – 32 bit

• double precision equivalent to real*8 – 64 bit

• NEK5000 uses compiler flags (e.g. -r8 for Intel or PGI) to promote
everything declared real to real*8.

Variables

2021-03-12 15

Arrays:

• Statically allocated in Fortran 77

• By default Fortran array indexing starts at 1

• Array range can be explicitly specified.

• Fortran arrays are stored in column-major order;

– e.g. A(3,2) is stored A(1,1) A(2,1) A(3,1) A(1,2) A(2,2) A(3,2) A(1,3) A(2,3)
A(3,3)

– Important for loop execution and passing arguments to subroutines

Variables

2021-03-12 16

Global variables:

• Global variables are stored in named common blocks

– Very simple structure containing just memory block starting and ending
position (no content information)

– Possible use for scratch space (extensively used in Nek5000)

– Must be declared consistently in all subroutines/functions accessing a
variable

– Simplest if all are same type (prevents alignment/performance issue)

– Can be declared in external file and included in a subroutine

Variables

2021-03-12 17

Global variables:

• Global variables are stored in named common blocks

– Error prone

– Little control over loaded variables

– Replaced in Fortran 90 by modules

• Include files and common blocks are extensively used in
Nek5000 providing access to main parameters and global
variables

Variables

2021-03-12 18

Variables

2021-03-12 19

Example of include file SIZE

Variables

2021-03-12 20

Example of include file SOLN

Loops

2021-03-12 21

Two possible variants of loop construction can be found in Nek500:

• old do (s) i=start, end [,stride]

• more modern

Loops

2021-03-12 22

Implicit index merging; notice different shapes of arrays and loop
bounds:

• jacmi(lx1*ly1*lz1,lelt); sij(lx1*ly1*lz1,6,lelv); rxm1(lx1,ly1,lz1,lelt)

• nxyz = lx1*ly1*lz1

Loops

2021-03-12 23

• Loop breaking can be performed with go to statement
transferring control to the labelled executable statement.

• go to is simple to use and allows to write a shorter code, but
could make it hard to read

• Replaced in Fortran 90 with exit and cycle statements

• In some cases go to is overused in Nek5000.

Conditional statements

2021-03-12 24

• Generic if statement

if (logical expression) executable expression

• Logical operators: .not., .and., .or., .xor.

x.gt.y x>y x.ge.y x≥y x.eq.y x=y

x.lt.y x<y x.le.y x≤y x.ne.y x≠y

Subprograms

2021-03-12 25

• Subroutines (no return value)

Subprograms

2021-03-12 26

• Functions return a single value

• Name must correspond to implicit types or should be explicitely
declared

Subprograms

2021-03-12 27

• No checking of subroutine/function prototypes is done by
default i.e. compiler will not tell you if you make a mistake with
variables in call statement

• All arguments to subroutines/functions are transferred as pointers
(call by reference)

– Use of single variable as multiple arguments in a single call is not allowed
(important for optimisation)

– Possible array reshaping assuming continuous set of data

Subprograms

2021-03-12 28

• Subroutine arguments called by reference

Formatted Output

2021-03-12 29

• Formatted output is done using write and print statements.

– Write takes two arguments followed by list of things to output.

> The first argument is normally 6 for standard output (i.e. output to
screen)

> The second is the label of the format statement.

> Write(*,*) will give unformatted output, which is useful for quick tests.

Format Statement

2021-03-12 30

• Format statement requires label so it can be referenced.

– Label must be unique in the scope

– Format statement determines how numbers are output

– If given format cannot contain the number to be output you will get asterisk
output (******) e.g. if you give 4 digits for integer output and the output is 5.

Calling C/CUDA routines from Fortran

2021-03-12 31

• Nek5000 includes some C and CUDA routines, called from
Fortran

• Fortran name mangling

– Most common now is adding single underscore and with lower case
subroutine names (historically others existed)

> Subroutine abc becomes routine abc_ internally in compiler.

– Pre-processor is used to control mangling method, example code in C
files.

> Require "extern C" to make sure C compiler does not do any name
mangling as well (or more likely C++/CUDA compiler for function
overloading etc).

– Variables are passed by reference in FORTRAN

– Passing character arrays somewhat complicated, as FORTRAN character
arrays also have length information.

– Note data layout of arrays is reversed

>Fortran fastest moving index is first index A(i,j)

>In C fastest moving index is second index A[j][i]

